European physicists unveil plans for a particle collider that would be longer

first_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) CERN has succeeded with such tunnel visions before. It built the Large Electron-Positron (LEP) collider, which operated from 1989 to 2001 and studied in detail previously discovered standard model particles called the W and Z bosons. CERN then ripped out the LEP and built the LHC in same tunnel.European physicists have competition, however. Physicists in China have their own plans to build a 100-kilometer-long electron-positron ring, perhaps by 2030, and to follow it with a proton collider. Meanwhile, physicists in Japan hope to build a 20-kilometer-long straight-shot linear collider. It, too, would collide electrons and positrons to generate Higgs bosons. Researchers at CERN also have plans for a linear collider that works on a more novel acceleration technique.The case for building any new collider is weaker than particle physicists had hoped it would be when the LHC started to take data in 2010. They had hoped that in addition to—or perhaps instead of—the Higgs, the LHC would blast out other new particles and break their decadeslong stalemate with the standard model. The LHC has yet to produce any such particles—although CERN researchers plan to collect more than 10 times the data that they have now. Without some additional discovery, however, physicists may face a tough sell in convincing governments to spend billions of dollars to study the Higgs alone. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Email CERN European physicists unveil plans for a particle collider that would be longer than the Panama Canalcenter_img By Adrian ChoJan. 15, 2019 , 4:55 PM Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe An artist’s impression of a particle collision in CERN’s future collider European particle physicists today released a conceptual design for a successor to the world’s biggest atom smasher, the 27-kilometer-long Large Hadron Collider (LHC), which straddles the border between Switzerland and France. The report calls for an even bigger accelerator, that would be 100 kilometers in circumference, to study in detail the Higgs boson, the weird new particle that the LHC discovered to great fanfare in 2012. The new machine, known for the moment as the Future Circular Collider (FCC), would cost €9 billion. It would begin operations around 2040, after the LHC is scheduled to shut down, according to a statement issued by CERN, the European particle physics laboratory near Geneva, Switzerland.The LHC smashes protons into protons to generate the most energetic collisions currently possible. In contrast, the proposed FCC would smash electrons into their antimatter counterparts, positrons at energies 35 times lower than the LHC (but higher than any previous electron-positron collider). The electron-positron collisions would still be energetic enough to create Higgs bosons, but they would also be far cleaner and easier to analyze than the LHC’s collisions. That’s because protons are messy objects made of other particles called quarks and gluons. In contrast, electrons and positrons are, as far as physicists know, indivisible fundamental particles.The electron-positron collider would look for hints of physics beyond scientists’ prevailing standard model by searching for discrepancies between how the Higgs decays and standard model predictions. The FCC would also serve as a stepping stone to another future proton collider that could reach an energy seven times higher than the LHC, which might blast into existence new particles whose existence the electron-positron could only infer. The machine would cost an additional €15 billion and would fit into the FCC’s tunnel in the mid-2050s or later. The FCC would help make that ultimate machine more affordable by covering the €5 billion cost of the tunnel.last_img read more